Search results for "covariance matrices"

showing 10 items of 16 documents

Metabolic connectivity as index of verbal working memory

2015

Positron emission tomography (PET) data are commonly analyzed in terms of regional intensity, while covariant information is not taken into account. Here, we searched for network correlates of healthy cognitive function in resting state PET data. PET with [18F]-fluorodeoxyglucose and a test of verbal working memory (WM) were administered to 35 young healthy adults. Metabolic connectivity was modeled at a group level using sparse inverse covariance estimation. Among 13 WM-relevant Brodmann areas (BAs), 6 appeared to be robustly connected. Connectivity within this network was significantly stronger in subjects with above-median WM performance. In respect to regional intensity, i.e., metaboli…

AdultMaleModels Anatomicmedicine.medical_specialtyAudiologyEstimation of covariance matricesYoung AdultNeuroimagingFluorodeoxyglucose F18medicineHumansAnalysis of covarianceResting state fMRImedicine.diagnostic_testWorking memoryBrainCognitionIntensity (physics)Memory Short-TermNeurologyPositron emission tomographyPositron-Emission TomographyOriginal ArticleFemaleNeurology (clinical)Nerve NetCardiology and Cardiovascular MedicinePsychologySocial psychology
researchProduct

When do Improved Covariance Matrix Estimators Enhance Portfolio Optimization? An Empirical Comparative Study of Nine Estimators

2010

The use of improved covariance matrix estimators as an alternative to the sample estimator is considered an important approach for enhancing portfolio optimization. Here we empirically compare the performance of 9 improved covariance estimation procedures by using daily returns of 90 highly capitalized US stocks for the period 1997-2007. We find that the usefulness of covariance matrix estimators strongly depends on the ratio between estimation period T and number of stocks N, on the presence or absence of short selling, and on the performance metric considered. When short selling is allowed, several estimation methods achieve a realized risk that is significantly smaller than the one obtai…

Estimation of covariance matricesMatérn covariance functionCovariance functionCovariance matrixStatisticsEconometricsRational quadratic covariance functionCovariance intersectionCovariancePortfolio optimizationMathematicsSSRN Electronic Journal
researchProduct

How to simulate normal data sets with the desired correlation structure

2010

The Cholesky decomposition is a widely used method to draw samples from multivariate normal distribution with non-singular covariance matrices. In this work we introduce a simple method by using singular value decomposition (SVD) to simulate multivariate normal data even if the covariance matrix is singular, which is often the case in chemometric problems. The covariance matrix can be specified by the user or can be generated by specifying a subset of the eigenvalues. The latter can be an advantage for simulating data sets with a particular latent structure. This can be useful for testing the performance of chemometric methods with data sets matching the theoretical conditions for their app…

Mathematical optimizationCovariance functionCovariance matrixProcess Chemistry and TechnologyMathematicsofComputing_NUMERICALANALYSISMultivariate normal distributionCovarianceComputer Science ApplicationsAnalytical ChemistryEstimation of covariance matricesScatter matrixMatrix normal distributionCMA-ESAlgorithmComputer Science::DatabasesSpectroscopySoftwareMathematicsChemometrics and Intelligent Laboratory Systems
researchProduct

When do improved covariance matrix estimators enhance portfolio optimization? An empirical comparative study of nine estimators

2011

The use of improved covariance matrix estimators as an alternative to the sample estimator is considered an important approach for enhancing portfolio optimization. Here we empirically compare the performance of 9 improved covariance estimation procedures by using daily returns of 90 highly capitalized US stocks for the period 1997-2007. We find that the usefulness of covariance matrix estimators strongly depends on the ratio between estimation period T and number of stocks N, on the presence or absence of short selling, and on the performance metric considered. When short selling is allowed, several estimation methods achieve a realized risk that is significantly smaller than the one obtai…

Physics - Physics and SocietyCovariance matrixPortfolio optimizationEconophysicsDiversification (finance)EstimatorFOS: Physical sciencesSample (statistics)Physics and Society (physics.soc-ph)FOS: Economics and businessEstimation of covariance matricesPortfolio Management (q-fin.PM)Risk Management (q-fin.RM)StatisticsPortfolioFraction (mathematics)Correlation structurePortfolio optimizationGeneral Economics Econometrics and FinanceFinanceStatistical methodQuantitative Finance - Portfolio ManagementMathematicsQuantitative Finance - Risk Management
researchProduct

Sign and rank covariance matrices

2000

The robust estimation of multivariate location and shape is one of the most challenging problems in statistics and crucial in many application areas. The objective is to find highly efficient, robust, computable and affine equivariant location and covariance matrix estimates. In this paper, three different concepts of multivariate sign and rank are considered and their ability to carry information about the geometry of the underlying distribution (or data cloud) are discussed. New techniques for robust covariance matrix estimation based on different sign and rank concepts are proposed and algorithms for computing them outlined. In addition, new tools for evaluating the qualitative and quant…

Statistics and ProbabilityCovariance functionCovariance matrixApplied MathematicsMathematicsofComputing_NUMERICALANALYSISCovariance intersectionCovarianceEstimation of covariance matricesMatérn covariance functionScatter matrixStatisticsRational quadratic covariance functionStatistics Probability and UncertaintyAlgorithmMathematicsJournal of Statistical Planning and Inference
researchProduct

The affine equivariant sign covariance matrix: asymptotic behavior and efficiencies

2003

We consider the affine equivariant sign covariance matrix (SCM) introduced by Visuri et al. (J. Statist. Plann. Inference 91 (2000) 557). The population SCM is shown to be proportional to the inverse of the regular covariance matrix. The eigenvectors and standardized eigenvalues of the covariance, matrix can thus be derived from the SCM. We also construct an estimate of the covariance and correlation matrix based on the SCM. The influence functions and limiting distributions of the SCM and its eigenvectors and eigenvalues are found. Limiting efficiencies are given in multivariate normal and t-distribution cases. The estimates are highly efficient in the multivariate normal case and perform …

Statistics and ProbabilityCovariance functionaffine equivarianceinfluence functionMultivariate normal distributionrobustnessComputer Science::Human-Computer InteractionEfficiencyestimatorsEstimation of covariance matricesScatter matrixStatisticsAffine equivarianceApplied mathematicsCMA-ESMultivariate signCovariance and correlation matricesRobustnessmultivariate medianMathematicsprincipal componentsInfluence functionNumerical AnalysisMultivariate medianCovariance matrixcovariance and correlation matricesdiscriminant-analysisCovarianceComputer Science::Otherdispersion matricesefficiencyLaw of total covariancemultivariate locationtestsStatistics Probability and Uncertaintyeigenvectors and eigenvaluesEigenvectors and eigenvaluesmultivariate signJournal of Multivariate Analysis
researchProduct

Estimates of Regression Coefficients Based on the Sign Covariance Matrix

2002

SummaryA new estimator of the regression parameters is introduced in a multivariate multiple-regression model in which both the vector of explanatory variables and the vector of response variables are assumed to be random. The affine equivariant estimate matrix is constructed using the sign covariance matrix (SCM) where the sign concept is based on Oja's criterion function. The influence function and asymptotic theory are developed to consider robustness and limiting efficiencies of the SCM regression estimate. The estimate is shown to be consistent with a limiting multinormal distribution. The influence function, as a function of the length of the contamination vector, is shown to be linea…

Statistics and ProbabilityEstimation of covariance matricesCovariance matrixLinear regressionStatisticsRegression analysisMultivariate normal distributionStatistics Probability and UncertaintyCovarianceAsymptotic theory (statistics)Least squaresMathematicsJournal of the Royal Statistical Society Series B: Statistical Methodology
researchProduct

Maximum likelihood estimation for the exponential power function parameters

1995

This paper addresses the problem of obtaining maximum likelihood estimates for the three parameters of the exponential power function; the information matrix is derived and the covariance matrix is here presented; the regularity conditions which ensure asymptotic normality and efficiency are examined. A numerical investigation is performed for exploring the bias and variance of the maximum likelihood estimates and their dependence on sample size and shape parameter.

Statistics and ProbabilityEstimation theoryRestricted maximum likelihoodMaximum likelihood sequence estimationLikelihood principlesymbols.namesakeEstimation of covariance matricesModeling and SimulationStatisticsExpectation–maximization algorithmsymbolsFisher informationLikelihood functionMathematicsCommunications in Statistics - Simulation and Computation
researchProduct

Linear Recursive Equations, Covariance Selection, and Path Analysis

1980

Abstract By defining a reducible zero pattern and by using the concept of multiplicative models, we relate linear recursive equations that have been introduced by econometrician Herman Wold (1954) and path analysis as it was proposed by geneticist Sewall Wright (1923) to the statistical theory of covariance selection formulated by Arthur Dempster (1972). We show that a reducible zero pattern is the condition under which parameters as well as least squares estimates in recursive equations are one-to-one transformations of parameters and of maximum likelihood estimates, respectively, in a decomposable covariance selection model. As a consequence, (a) we can give a closed-form expression for t…

Statistics and ProbabilityMathematical optimizationEstimation of covariance matricesCovariance functionCovariance matrixLaw of total covarianceApplied mathematicsRational quadratic covariance functionCovariance intersectionStatistics Probability and UncertaintyCovarianceStatistical theoryMathematicsJournal of the American Statistical Association
researchProduct

Robustifying principal component analysis with spatial sign vectors

2012

Abstract In this paper, we apply orthogonally equivariant spatial sign covariance matrices as well as their affine equivariant counterparts in principal component analysis. The influence functions and asymptotic covariance matrices of eigenvectors based on robust covariance estimators are derived in order to compare the robustness and efficiency properties. We show in particular that the estimators that use pairwise differences of the observed data have very good efficiency properties, providing practical robust alternatives to classical sample covariance matrix based methods.

Statistics and ProbabilityMathematical optimizationEstimation of covariance matricesMatérn covariance functionCovariance functionCovariance matrixLaw of total covarianceApplied mathematicsRational quadratic covariance functionCovariance intersectionStatistics Probability and UncertaintyCovarianceMathematicsStatistics & Probability Letters
researchProduct